
Under Review - Extended Abstract Track 1–8, 2024 Symmetry and Geometry in Neural Representations

Structure Matters: Deciphering Neural Network’s
Properties from its Structure

Abstract

Neural networks; both biological and artificial, are commonly represented as graphs with
connections between neurons, yet there is little understanding of the relationship between
their graph structure and computational properties. Neuroscientists are trying to answer
this question in biological neural networks or connectomes; however, there is a big op-
portunity to explore this in the vast domain of artificial neural networks. We present
StructureReps, an architecture-agnostic framework for encoding neural networks as graphs
using graph representation learning. By capturing key structural properties, StructureReps
reveals strong correlations between network structure and task performance across various
architectures. Additionally, this framework has potential applications beyond the decoding
of neural network properties.

1. Introduction

Neural networks are powerful computational models consisting of layers of interconnected
neurons, where each connection, or edge, forms part of a directed graph that governs the flow
of information. In neuroscience, significant effort is devoted to understanding the function
of biological neural networks by reconstructing synaptic connectivity in the brain, revealing
how structure shapes function Consortium et al. (2021); Lappalainen et al. (2024); Winding
et al. (2023). But can we decipher computational properties from structure alone? We seek
to answer this question using artificial neural networks as a digital twin. While it’s widely
recognized that the performance of artificial neural networks is closely tied to their structure
LeCun et al. (1998); He et al. (2016); Vaswani (2017), a comprehensive understanding of
the relationship between a network’s accuracy and its underlying graph structure remains
elusive.

Jiao et al. (2022) proposed using relational graphs to interpret neural networks, em-
ploying simple graph metrics like clustering coefficient and average path length to represent
networks. However, these metrics are limited in capturing network complexity. A learned
parametric representation of the graph structure provides a more nuanced understanding
of network behavior.

To better capture the full graph structure of neural networks, we adopted a neural
approach to graph encoding. This method embeds both geometric and relational informa-
tion from the network’s parameter space, similar to how graph representation learning has
revealed key insights across domains such as social networks, molecular compounds, and
biological systems Kipf et al. (2018); Rhee et al. (2017); Li et al. (2023).

In this paper, we introduce StructureReps, an architecture-agnostic graph representa-
tion learning framework for neural networks. To evaluate its effectiveness, we applied it to
encode two different types of neural network and uncovered several key properties, espe-
cially insights into their performance on the tasks for which they were trained. Our results
demonstrate that StructureReps provides a robust approach for analyzing and understand-
ing network behavior independent of the underlying neural architecture.

© 2024 .



2. Method

Initial Node Features

With Laplacian Eigen 

Vectors 

W1

W2 W4

W3

Edge Attributes

Weight of the edge 

connecting two neurons

Updated Node 

Features with 

Edge Attention

Encoder Decoder

Z
 

(H
id

d
e
n
 E

m
b
ed

d
in

g
)

σ

μ

Embedded Representation of Neural 

Networks with Variational Autoencoder

Model weights 

(Epoch 1)
Model weights 

(Epoch 2)

Model weights 

(Epoch 200)

Blank Node 

Feature

(a)
(b)

(c)

…

Structural Variation Identification

Understanding the Relation Between 

Embedding and Performance

Wider Deeper

Figure 1: (a) Representation of Multi Layer Perceptron (MLP) and Convolutional Neural Network
(CNN) as graphs. (b) Initial node features generated with Laplacian positional encoding
are updated with an edge-attention layer. (c) With the generated graphs for each epoch,
a VGAE is trained to embed the neural networks into a fixed dimension, allowing the
decoding of performance and structural variations within the network from its structural
information only.

In this section, we focus on three key aspects of our framework: representing different
neural network architectures as a graph, extracting and updating node features within
these graphs, and finally, discussing the unified representation of neural networks and how
it reveals their properties.

Representing Neural Networks as a Graph: Given an n-layerMLP, where (a1, a2,
. . . , an) represents the number of neurons in each layer, the MLP is characterized by con-
secutive weight matrices with shapes (a2 · a1, a3 · a2, . . . , an · an−1). The weight matrix
Wk,(k+1) ∈ Rak+1×ak defines the connectivity between neurons in layers k and k + 1. Neu-
rons are nodes in the graph, and weight matrices represent edges and their features. For
a CNN, the channel of each layer is a node, and the filters that connect the channels
are edges. A filter with a k × k kernel has a k2-dimensional edge feature vector. Filters
between channels (c1, c2, . . . , cn) across layers capture connectivity, where weight matrices
Fi,(i+1) ∈ Rci+1×ci×k×k define relationships between channels i and i + 1. Filters (edges)
describe transformations between channels (nodes) across consecutive layers.

Node Feature Construction: To encode the graph representations of neural net-
works, we generate meaningful node features using two methods.
1. Laplacian Eigenvector Positional Encoding: We follow the method of Dwivedi et al.
(2023), using Laplacian eigenvectors as proposed by Belkin and Niyogi (2003) to address
the lack of distinctive node features. This leverages eigenvectors derived from the Nor-
malized Laplacian of the graph adjacency matrix (see Appendix A1.1) 2. Node Feature
Generation with Edge Attention (EA) Layer: We introduce Edge Attention(EA) layer,
which creates node features x′

j for a node j by aggregating edge features εi,j from all edges
(i, j) connected to j during training. The contribution of each edge is weighted by the

2



StructureReps

Table 1: Pearson correlations between the training accuracies of different networks and the
structural representations obtained through various combinations of encoding lay-
ers and features of choice. EA represents the Edge Attention layer, TC represents
the Transformer Convolution layer (Shi et al. (2020)), and GC represents the GAT-
Conv layer (Veličković et al. (2017)). LF and RF represent Laplacian and Random
features. StructureReps refers to the custom VGAE (EA+TC+LF). Results are
represented in meanvaraince format. Figures in bold represent the best values.

Graph Encoders Dense Neural Networks (MLP) Vision Networks (CNN)
Two
Moon

California Housing
Price Prediction

Forest
Covertype

CIFAR-10 ImageNet

EA+TC+LF 0.740.0020 0.390.0271 0.790.1201 0.940.0001 0.910.0002

EA+GC+LF 0.540.0053 0.260.0100 0.670.0126 0.840.0003 0.820.0042
GC+LF 0.100.0583 0.020.0022 0.040.0045 0.630.0070 0.560.0053
GC+RF 0.080.0052 −0.050.0023 0.020.0031 0.310.0018 0.160.0073

attention coefficient αi,j , which is learned to emphasize the most important edges (See Ap-
pendix A1.2). For MLPs, attention is weighted by edge weights, and for CNNs, by kernel
weights.

Unified Representation of Neural Networks and Decoding Properties: After
defining node and edge features for different architectures, we use a variational graph au-
toencoder (Kipf and Welling, 2016) to learn the structural representation of the graphs in a
self-supervised manner, as shown in Figure 1. This allows us to encode any trained neural
network into a fixed-dimensional representation. We show the robustness of our method
by decoding network performance on specific tasks solely from structural information. Ad-
ditionally, we show that our unified representation can understand structural variations
within networks of similar parameter space and capture their learning dynamics.

3. Results

In this section, we present a comprehensive overview of the experiments conducted and
their corresponding results, providing a rigorous evaluation of StructureReps’ effectiveness
and viability.
Performance Decoding from Structure:
We perform MLP prediction on three datasets : Two moon classification as used by Liu et al.
(2023), California housing price prediction (Pace and Barry (1997)), and Forest covertype
prediction (Blackard (1998)) and CNN prediction on two image datasets (CIFAR-10, and a
curated version of ImageNet (). For each tasks, we train the model for 200-250 epochs and
record the performances. For each epoch, we get a new graph with updated weights accord-
ing to Section 2. From the graphs, unified embedding representations are extracted using
VGAE encoder. We use a linear regressor with 20% validation split on these embeddings
to decode the performance of the neural network at any particular epoch. Specifically, we
report the Pearson’s correlation between the predicted and actual performance scores. Per-
formances of StructureReps and other combinations on this score decoding task are shown
in Table 2. We see that, for MLP tasks. We get a Pearson’s Correlation of 0.74, 0.39, and
0.79 on the Two Moons, California housing price prediction, and the forest cover datasets
with the MLP graph respectively. For vision tasks, we achieve a Pearson’s correlation score

3



of 0.94 on CIFAR-10 and 0.91 on ImageNet using StructureReps. These results indicate
that with StructureReps, we can effectively decode the prediction performances of different
types of neural networks from their structural information.
Identification of Structural Variations and Learning Dynamics: To verify if Struc-
tureReps can encode the structural variations of different neural networks while capturing
the learning dynamics across each of these networks, we train three variants of MLP net-
works (regular, deeper, wider) with same parameter count on the Forest Covertype Predic-
tion task. We see in Figure 2(a) that structural variations are clearly identified within the
embedding space. Moreover, Figure 2(b) shows that within each structural cluster, perfor-
mance dynamics (epoch) also shows a gradual shift from lower to higher accuracy(bottom
left to top right). This indicates that graphs that have similar performances cluster closely
in the embedding space. This is more clearly observed in Figure 2(c), where we show that
their performances also get closer as the embedding distance between two neural network
graphs decreases.

(a) (b) (c)

Figure 2: (a) Clustering networks based on structural properties, with colors representing
different graph types. (b) Shows accuracy variation within clusters (color bar
indicates accuracy). (c) Highlights the positive relationship between structural
and performance similarity.

4. Conclusion and Discussion

In conclusion, we tested StructureReps on dense networks across three tasks and CNNs on
two vision tasks, demonstrating that our framework achieved the strongest correlation be-
tween network structure and performance in all cases. Moreover, this correlation will enable
to reliably identify the best-performing network from a set of candidates when compared
to a base network, showcasing the potential of our approach in neural architecture search.

In future work, StructureReps can be extended to encode a broader range of neural
network architectures, enabling a unified representation across diverse network types. Ad-
ditionally, leveraging the latent representations produced by StructureReps opens the door
to exploring important network properties such as human-AI alignment scores, uncertainty
estimation, and the calibration state. Moreover, this framework can be applied to encode
and decipher the properties of biological neural networks or connectomes, contributing to
advancements in structural neurobiology. In parallel, the framework can be utilized to
generate neural network “hashes” to ensure secure inference of a network. These future
developments will enhance the framework’s ability to provide more comprehensive insights,
ultimately improving the reliability and safety of neural networks in real-world applications.

4



StructureReps

References

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

MICrONS Consortium, J Alexander Bae, Mahaly Baptiste, Caitlyn A Bishop, Agnes L
Bodor, Derrick Brittain, JoAnn Buchanan, Daniel J Bumbarger, Manuel A Castro, Bren-
dan Celii, et al. Functional connectomics spanning multiple areas of mouse visual cortex.
BioRxiv, pages 2021–07, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Ben-
gio, and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine
Learning Research, 24(43):1–48, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Licheng Jiao, Jie Chen, Fang Liu, Shuyuan Yang, Chao You, Xu Liu, Lingling Li, and Biao
Hou. Graph representation learning meets computer vision: A survey. IEEE Transactions
on Artificial Intelligence, 4(1):2–22, 2022.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neu-
ral relational inference for interacting systems. In International conference on machine
learning, pages 2688–2697. PMLR, 2018.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Janne K Lappalainen, Fabian D Tschopp, Sridhama Prakhya, Mason McGill, Aljoscha Nern,
Kazunori Shinomiya, Shin-ya Takemura, Eyal Gruntman, Jakob H Macke, and Srinivas C
Turaga. Connectome-constrained networks predict neural activity across the fly visual
system. Nature, pages 1–9, 2024.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based
recommendation in social networks. Neurocomputing, 549:126441, 2023.

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular
training for mechanistic interpretability. Entropy, 26(1):41, 2023.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability
Letters, 33(3):291–297, 1997.

5



Sungmin Rhee, Seokjun Seo, and Sun Kim. Hybrid approach of relation network and
localized graph convolutional filtering for breast cancer subtype classification. arXiv
preprint arXiv:1711.05859, 2017.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun.
Masked label prediction: Unified message passing model for semi-supervised classifica-
tion. arXiv preprint arXiv:2009.03509, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Michael Winding, Benjamin D Pedigo, Christopher L Barnes, Heather G Patsolic, Youngser
Park, Tom Kazimiers, Akira Fushiki, Ingrid V Andrade, Avinash Khandelwal, Javier
Valdes-Aleman, et al. The connectome of an insect brain. Science, 379(6636):eadd9330,
2023.

6



StructureReps

Appendix

A1. Details of Method

A1.1. Algorithm for Generating Laplacian Eigenvector Positional Encoding

Algorithm 1 Laplacian Eigenvector Positional Encoding

Input: Graph G = (V,E), number of eigenvectors k, sparse threshold T
Output: Positional encodings PE of graph G

1. Compute the Laplacian:
Lsym = D−1/2(D−M)D−1/2 ; // Symmetric normalized Laplacian matrix

2. Eigenvector Computation:
if N < T then

Compute all eigenvectors V and eigenvalues λ such that Lsymvi = λivi

else
Compute the smallest k + 1 eigenvectors using iterative methods

end

3. Eigenvector Selection:
Sort V by eigenvalues and select k smallest non-trivial eigenvectors Vselected =
[v2,v3, . . . ,vk+1]

4. Random Sign Flipping:
PE = Vselected ⊙ S ; // Random sign vector S ∈ {−1, 1}k

return PE

A1.2. Edge Attention Layer

To create the node feature x′
j , we apply the update function in Equation (1), where N (j)

represents set of all node i which has an edge (i, j)

x′
j =

∑
i∈N (j)

αi,j · εi,j (1)

Here, αi,j denotes the attention co-efficient which is calculated as in Equation (2)

αi,j =
exp

(
LeakyReLU

(
a⊤ε ε

proj
i,j

))
∑

k∈N (j) exp
(
LeakyReLU

(
a⊤ε ε

proj
k,j

)) (2)

We calculate εprojk,j following the transformations as in Equation (3) where n(·) represents
a basic noise function with no learnable parameters.

7



εtransformed
i,j = LeakyReLU(Θεεi,j + bε)

εnoisedi,j = n(εi,j) (3)

εproji,j = Θlin

(
Concat

(
εtransformed
i,j , εi,j , ε

noised
i,j

))
A1.3. Why do we need other graph neural network layers?

One important question that might arise is why Edge Attention Layer should not be used
throughout the encoder. It is important to note that while Edge Attention has learnable
parameters, it is ultimately a feature generation layer and not a message-passing layer. As
such, it is not meant to process node features but to generate them and should not be used
beyond the first layer of any encoder. We use other message-passing layers like GATConv
and Transformer Conv to process the features generated by Edge Attention.

A2. Additional Results

Table 2: Pearson correlations between the test accuracies of different networks and the
structural representations obtained through various combinations of encoding lay-
ers and features of choice.

Graph Encoders Dense Neural Networks (MLP) Vision Networks (CNN)
Two
Moon

California Housing
Price Prediction

Forest
Covertype

CIFAR-10 ImageNet

EA+TC+LF 0.710.00231 0.420.0261 0.860.0595 0.810.004 0.830.0022

EA+GC+LF 0.520.0062 0.290.0080 0.680.0122 0.730.0014 0.740.0030
GC+LF 0.090.0560 0.060.0027 0.060.0042 0.550.0020 0.420.0012
GC+RF 0.090.0049 −0.060.0023 0.030.0036 0.180.0002 0.110.0082

8


	Introduction
	Method
	Results
	Conclusion and Discussion
	Details of Method
	Algorithm for Generating Laplacian Eigenvector Positional Encoding
	Edge Attention Layer
	Why do we need other graph neural network layers?

	Additional Results

